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Homogeneous problems of the natural oscillations of bounded eleetroelastic solids, in contact with rigid plane punches and coated 
with a system of open- ~md short-circuited electrodes, are considered. A variational principle is constructed which has the properties 
of minimality, similar to the well-known variational principle [1] for problems with only short-circuited electrodes. The discreteness 
of the spectrum and the completeness of the eigenfunctions are proved. As a consequence of variational principles, the properties 
of an increase or a decrease in the natural frequencies when the mechanical and electrical boundary conditions and the moduli  
of the electroelastie solid change are established. It is noted that changes in the mechanical and electrical parameters cause opposite 
changes in the natural  frequencies. A confirmation of the fact that, for an electroelastic solid with a mnlti-eleetrode coating, the 
natural frequencies for short-circuited electrodes (the electric resonance frequencies) do not exceed the corresponding frequencies 
for open-circuited electrodes (the antiresonance frequencies) is obtained as a special case of one of the theorems proved. © 
1996 Elsevier Science :Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Suppose an electroelastic solid occupies a region t~, bounded in R 3. We will assume that the region f~ 
and its boundary igfl = S are subject to the following conditions: f~ is the sum of a finite number of 
sets, star-shaped with respect to any spheres contained in them, while S is a Lipschitz boundary of class 
C 1. These (f~, S) conditions are presented more comprehensively in [1]. 

Confining ourselves to investigating steady exp(itot) oscillating modes, we will use only the amplitude 
values for all the physical quantities considered without additional provisos. 

The homogeneous problems of the oscillations of electroelastic solids include differential equations 
in fl consisting of the field equations in the electrostatics approximations 

-V-  o" = ptoEu (1.1) 

V.  D = 0 (1.2) 

and the governing relations of a linear electroelastic solid 

o ' = c  E-- ¢ - e  r- E (1.3) 

D = e - -  ¢ + a s- E (1.4) 

= e(u) = (Vu + y u r ) / 2 ,  E = E(to) = -Vto (1.5) 

We have used t]he notation that is standard [2] for the theory of electroelasticity, namely, or and 
are second-rank stress and strain tensors, D and E are the electric induction and electric-field vectors, 
p is the density of the material, to is the angular frequency of the oscillations, u is the displacement 
vector, t o is the electric-field potential, e e is a fourth-rank tensor of the elastic moduli, e is a third-rank 
tensor of the piezoelectric moduli, )s is a second-rank permitivity tensor and ( . . . ) r  is the operation of 
transposition. 

We will assume that the function p(x) is a piecewise-continuous and p(x) I> P0 > 0, the components 
• S of the tensors e e, q., ~ are laiecewise-continuous together with their first derivatives with respect to x, 

E E E /~ E s s E s • ""  where cijkl = ciju, = cji~ = Cklij, eOk = Cikj, ,~ ij = ~ji and c~j~l and ~ij satisfy the condlUons for them to be 
strictly positive-definite. 
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The boundary conditions are of two types: mechanical and electrical. 
To formulate the mechanical boundary conditions we will assume that the boundary S can be split 

into two subsets: So and S,, (S = So U S,). 
The parts of the boundary So are stress-free, i.e. 

n .  o- = 0, x e So (1.6) 

where n is the unit vector of the outward normal to the surface. 
Suppose S,, = U S~,, k = 0, 1 , . . . ,  L; S,,0 ~ O, Suk do not border one another, while among Suk there 

are L + 1 - I rigidly clamped sections and I plane parts, in contact with plane punches, whose masses 
will be neglected. We will assume, for simplicity, that all these l plane parts are perpendicular to the x3 
axis. Then, we can assume the following boundary conditions on S,k 

~ r . n - ( n . ( r . n ) n = 0 ,  x e  S,i, i = 1 , 2  . . . . .  1, I~<L (1.7) 
2 

/4 
u .  n = ~o~j ix j ,  X ~. S u i ,  x 0 = 1, i = 1,2 . . . . .  1, l <~ L (1.8) 

j=0 

] x i n . c r . n d S = O ,  x0= l ,  j=0 ,1 ,2 ,  i=1,2  ..... l, l<~L  (1.9) 
S.i 

u = 0 ,  x~  Suj, j = 0 , / +  1 , / + 2  . . . . .  L, S , , 0 ~  (1.10) 

where the contact conditions (1.7)-(1.9) do not occur when l = 0. 
The unknown quantities a~i, which specify the plane displacements of the sections S,/, are to be 

determined from the integral conditions (1.9). 
To specify the electrical boundary conditions we will assume that the boundary S is split into two 

subsets: SO and S~. The sections SO do not have electrodes, and the following conditions are satisfied 
on them 

n . D = 0 ,  x a S o  
(1.11) 

The subset S~ is a combination of M + 1 sections S~  (k = 0, 1 , . . . ,  M), which are not adjacent 
to one another, coated with infinitesimally thin electrodes. We will specify the following boundary 
conditions on these sections 

(p=(1)i, x e  S¢i, i = i , 2  . . . . .  m, m~<M, ~i=const  (1.12) 

I n . D d S = 0 ,  x ~ S ~ i ,  i=1,2  . . . . .  m, m < ~ M  (1.13) 
S~i 

(p=0, x~  S~0 j, j = 0 ,  m+ I, m + 2  . . . . .  M, S ~ 0 # ~  (1.14) 

By (1.12) and (1.13) there are m open-circuited electrodes on which the potentials (l)i are initially 
unknown, but the overall charges on each electrode are equal to zero. The remaining M + 1 - m 
electrodes are assumed to be short-circuited with zero values of the potentials. The cases m = 0 and 
m = M are not ignored. In the first case, conditions (1.12) and (1.13) are not present, and all the 
electrodes are short-circuited. In the second case, condition (1.14) only applies for the electrode S~0, 
and all the electrodes S~  (k = 0, 1 , . . . ,  m = M) can be assumed to be open-circuited. 

In fact, since the potential (p is defined apart from a constant, we can take (1.14) for S~0, and from the equation 

]n.DdS=O 
s 

which follows from (1.2), and from (1.11) and (1.13) it follows that (1.13) is also satisfied for S~0 with (I)0 = 0. 

We will also assume that all the sections Suk and S~  have Lipschitz boundaries of the class C 1 [1] 
and do not intersect one another. 

Problem (1.1)-(1.14) is a problem of natural oscillations and consists of finding the eigenvalues o) 2 
and eigenfunctions u and % which give non-trivial solutions of the homogeneous boundary-value 
problem. 
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Conditions (1.12) and (1.13) are similar to the mechanical contact conditions (1.7)-(1.9) with rigid 
punches. These "contact" boundary conditions distinguish this problem from the problem investigated 
previously in [1] with only short-circuited electrodes with m = 0 and I = 0. 

We will establish the mathematical properties of the spectrum of problem (1.1)-(1.14) by combining 
the approaches u.';ed in [1, 3] when investigating dynamic problems of electroelasticity and contact 
problems of the theory of elasticity. 

2. G E N E R A L I Z E D  AND VARIATIONAL FORMULATION 
OF THE PROBLEM 

We will introduce the space of functions 9 and the vector functions u, defined on ~, which we shall 
need later. 

We will denote by Hp the space of vector functions u e L2 with the scalar product 

(u, v)p = .[ pu. vd~ 
!71 

On the set of w,~ctor functions u e C 1 which satisfy (1.10) and (1.8) for arbitrary ~i  on S~/, we will 
introduce the scalar products 

(u, v)ut = ~ (Vu)..(Vv) r df~ (2.1) 
f~ 

The closure of ~this set of vector functions u in the norm generated by the scalar product (2.1) will 
be denoted by H~.. 

On the set of functions 9 e C 1 which satisfy (1.14) and (1.12) for arbitrary ~i on S~/(i = 1, 2 . . . . .  
m), we will introduce the scalar products 

(9, V),,,, = J V9' Vvdn (2.2) 
t'l 

The closure of this set in the norm generated by the scalar product (2.2) will be denoted by H~m. 
Then, for arbitrary v ~ H.,t, X ~ H ~ ,  using standard procedures, we can convert (1.1)-(1.14) to the 

form 

-¢OZp(u, v) + c(u, v) + e(qh v) = 0 (2.3) 

-e( X, u) + a( 9, Z) = 0 (2.4) 

where 

p(u,v)= ~pu.vd~, c(u,v)= I¢(u)..c t~..¢(v)df~ 

e(9, v)= SVg.e.~(v)dfL o(9, Z) = ~V9.3 s .Vzd~ 
(2.5) 

By virtue of the properties assumed earlier, the forms p(u, v), c(u, v) and )(9, X) in (2.5) are 
symmetrical, bilinear and positive-definite in L2, Hut and H ~ ,  respectively, while e(q~, v) is a bilinear 
form. 

Since for fixed u ~ H,t, 9 ~ H ~ ,  e(x, u) and ~ (9, X) are linear-bounded functions in Hq~, by Riesz' 
theorem elements eu, 3 9 ~ H ~  exist and are unique such that for X ~ H ~  

e( X, u) = (X, eu)~0m (2.6) 

a(9, Z) = (ag, Z),p,,, (2.7) 

It is obvious that eu and )9  are linear bounded operators acting from Hut into H ~  and from H~,n 
into H~m, respectively, and an inverse exists for the operator )9. 
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From (2.4), (2.6) and (2.7) we obtain that 

aq) = e u ,  ¢p = A t . ' u ,  At." = 3 - 1 e  (2.8) 

where the operator A ~  acts from Hut into H~m, and is linear and bounded. 
Using (2.6)-(2.8) we can represent system (2.3), (2.4) in the form 

- C 0 2 p ( U ,  V)  + cot.'(U, v ) = O  (2.9) 

where 

cat.'(u, v) = c(u, v) + a(At'u, At 'v)  (2.10) 

Definition. We will call the triple of quantities (0) 2, U e Hut, ~0 e H ~ ) ,  which satisfy (2.9) and (2.8) 
for arbitrary vector functions v ~ H,,l or, which is equivalent (2.3) and (2.4) for arbitrary v ~ Hut, X 
H~n, a generalized solution of  problem (1.1)-(1.14). 

By discussions similar to those presented in [1] for the case when m = 0 and I = 0, we can show that 
the space I-I~t~, which is the closure of the set of  vector functions u E C a, satisfying (1.8) and (1.10) in 
the norm generated by the scalar product (2.10), is equivalent to Hut, and the following theorem follows 
from the complete continuity of the operator of embedding from Hut into Hp, as also in the general 
situation [4]. 

Theorem 2.1. The operator equation (2.9) has a discrete spectrum 0 < 0)~,,,a ~< O-)L2 ~ • • • ~ 
~0~a, ~< . . . .  0 ~ - - - )  ** as k ---> **, and the corresponding eigenfunctions u(~ form a system that is ortho- 
gonal and complete in the spaces Hp and H c ~ .  

Theorem 2.2. (The Courant-Fisher minimax principle) 

[ 
= / mi Rtm(V) o)2~ max **0.*~],1 

Wl,W2,.. . ,wk-t E aulLp(v,wj)=O,j=l,2,...,k_ll 

where Rtm(V) is the Rayleigh quotient 

cat. ' (v, v) 
Rt" . (v) = 

p(v,v) 

The subscripts l and m in Theorems 2.1 and 2.2 are introduced for convenience in indicating later 
that the generalized solutions belong to problems with l sections in contact with rigid plane punches, 
and with m open-circuited electrodes. 

Note that Theorem 2.1 is important for justifying Fourier's method of solving unsteady problems of 
electroelasticity [5, 6]. 

3. T H E  R E L A T I O N  B E T W E E N  T H E  O P E R A T O R S  Aim AND At0 

We will introduce the functions ~ ~ H ~ t  (j = 1, 2 . . . . .  M), yj  = 6jk, x ~ S ~  (k = 0, 1 . . . . .  M) 
which, for all X ~ H,0, satisfy the integral identity 

3(Vj, X) = 0 (3.1) 

u 
Using the quantities C r = ~ (¥i, ~ )  we form the M x M matrix C M called the static-capacitance matrix 

• • . EJ . . . . . .  

m electrostatics. In view of the fact that the form ) ((p, X) is symmetric and posmve-definlte In the space 
H _ ,  the matrix C M will also be symmetric and positive-definite. Then, any principal m x m submatrices 

m ~ C~'made  up of the elements Ci), 1 i , j  m will also be symmetric and positive-definite, as also the 
m 1 inverse matrices S = (cm) - . 

For a problem with m open-circuited electrodes, the arbitrary element X ~ H~m and the solution 
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9 ~ H ~  can be represented in the form 

m m 
~----~Od" E X k ~ k  ' ~ = ~ 0  d" E~kYk (3.2) 

k=l k=l 

where Z0, 9o ~ I-I~, Xk are arbitrary constants, while ~k are initially unknown values of tp on S~ from 
(1.12). 

Substituting (3.2) into (2.4) and using (3.1) and the fact that ~ ,  X~, k = 1, 2 . . . . .  m are arbitrary, 
we obtain 

a(9o, Z0) = e(Z0, u) (3.3) 
m 

e(Vk,u) = ~ 1 C ~  j (3.4) 

From (3.3) by (2.6)-(2.8) we have ~ = At0u, and from (3.4) we have 

m 
( i )k  m u = ~,SkjV ), V; = e(Vj,U) (3.5) 

j = l  

As a result, using (2.8) and (3.5) from (3.2) for q~we obtain the following relation between the operators 
A/m and Al0 

almU = a / 0 u +  ~ ,  ~ S~jU/;~tll k 
k = l j = l  

Since At0u e K~0, using property (3.1) we will also have 

m fit 

3( Aimu, Atmv) = a( Alo,U, AloV) + '~. ~,A~tF~P~ 
t=U=l 

(3.6) 

for any u, v ~ Hul, 

4. CONSEQUENCE OF THE VARIATIONAL FORMATIONS 

We will call problem (1.1)-(1.4) the/m-problem, emphasizing by this the presence of l parts of Su/, 
in contact with plume punches, and m open-circuited electrodes S O. 

We will consider two similar lm- and pm-problems, which differ solely in the numbers I and p of 
contacting parts of Sui in (1.7)-(1.10). All the remaining governing parameters from (1.1)-(1.14) in the 
lm- and/p-problems are assumed to be the same. 

Theorem 4.1. If 0 ~< l < p ~< L, for any k the kth natural frequency of the/m-problem is no less than 
the kth natural frequency of the pm-problem, i.e. o) 2 I> to2,~. 

Since I < p, we have Hut C Hu~, andfor all v e HulAs, v = A._v and Rtm(V) = R~m(v). 
Then, Theorem 4.1 follows from the well-known discussions lrn'[4], using Theorem 2.2. 
We will now consider two similar/m- and/n-problems (1.1)-(1.14), which differ solely in the numbers 

m and n of open-circuited electrodes S O in (1.12)-(1.14). 

Theorem 4.2. If 0 ~< m < n ~< M, then, for any k, the kth natural frequency of the/m-problem does 
not exceed the kth natural frequency of the/n-problem, i.e. co~,a, ~< tOmSk. 

By (2.10) and (:3.6) for m ~ 0 we have 

~ mm 
c3tn(v,v)- Catm(v, v) = "kj--kcn ~u~,~.j _ E E S~t,k ~ l ,~m ~ 

k=|j=l k=lj=l 

We will represent the matrix S" in partitioned form 

(4.1) 
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where G and F are m x m and (n - m) x (n - m) positive-definite symmetric matrices, respectively. 
Since the matrix S" is the inverse of C ~, while S m is the inverse of the submatrix C m of the matrix C ~, 
we have from the representation [7] for a matrix that is the inverse of a partitioned matrix 

S m = G - B r .  F -~ • B (4.3) 

Using (4.2) and (4.3) the right-hand side of (4.1) can be represented in the form 

(~I'~)r Inr F-~n n Brl q, F (4.4) 

where W ~ is an n-dimensional vector with components ~P~. 
The matrix in (4.4) is positive-semidefinite [7], and consequently for all v e Ha  the following in. 

equalities hold 

calm(v, v) <~ cat,(v, v), R~m(v) ~< R~(v) 

These inequalities also hold when m = 0, since, in this case, there are no sums with ~ in (4.1), and 
the matrix S n is positive-definite. 

The inequality proved for the Rayleigh quotients, taking Theorem 2.2 into account, in fact also proves 
Theorem 4.2 [4]. 

We will investigate the change in the natural frequencies of the/m-problem (1.1)-(1.14) when some 
of its parameters change. These changes will be indicated explicitly in the formulations of the following 
theorems, and all the quantities referring to the modified m-problems will be indicated by an asterisk. 
As above, for the initial and modified problems all the theorems not indicated in the formulations which 
define the parameters from (1.1)-(1.14) are assumed to be identical. 

Theorem 4.3. IfSu D S.u, Suj, D S*uj, j = O, 1 , . . . ,  L, we have co 2 i> C02*~nk for all k. 

Theorem 4.4. If the elastic moduli and the densities of the two/m-problems are such that c(v, v) I> 
c.(v, v), p(v, v) ~< p.(v, v) for any v e Hut, then ¢0~k ~> C02*lmk for all k. 

If S,, D S.,,, S,,. D S*uj, then H,, C H*u andA/m(V) = A*lm(V) for all v ~ I-I~. Consequently, Rtm(V) t> 
R*~(v) for all v ~ Hul in the conditions of both theorems. This inequality proves Theorems 4.3 and 4.4. 

Note. The influence of Su, the elastic moduli and the density of the electroelastic material on the first natural 
2 frequency too of problem (1.1)-(1.11) for I = 0 and m = 0 was considered in [8]. To do this the following variational 

principle was employed: ~0~01 = rain R(v), v = 0 on Su, and R(v) = (c(v, v) + 9 (Z, Z))/P(v, v) when Z is defined in 
terms of v as the solution of problem (1.2), (1.4), (1.5), (1.11), (1.14) with q~ replaced by Z and u replaced by v. 
Note that this formulation is not mathematically rigorous since Z is defined as the classical solution, while for o~ z 
and u a variational approach is used which gives a generalized solution. The condition c~a >~ Ceqkl proposed in [8] 
instead of c(v, v) ~> c.(v, v) in Theorem 4.4 is neither necessary nor sufficient. The correct condition of Theorem 
4.4 requires that for the differences of the moduli Aci~kt = c~#ta- c~*wd, the form Ac(v, v) should be positive-definite, 
which is not ensured by the inequalities c~#kl >/CEyk/,'and these inequalities are not necessarily satisfied when the 
form Ac(v, v) is positive-definite. 

Theorem45 I f S ¢ D S . ¢ , S  .DS.q~,j = 0, 1, , M w e  have ¢o2~a~ I> C02./mkfOr allk. , .. {pJ - ' -  

I f  S¢ D S.¢, S~ D S.q~, we have H~,~ C H.q~. From (2.4) and (2.8) for arbitrary functions u ~ H.l we 
have 

e( X, u) = ~(¢p, Z), q~, Z ~ H~om, q~ = AImU 

e( X, u) = a(q~., Z), ~0,, Z ~ H.~,,, q~. = A*tmU 

Substituting Z = q~ into these equations we obtain ~(q~., ~0). Consequently, 0 ~< )(tp - q~., 9 - 9") = 
(q~*, q~*) - ~ (9, 9), which implies the inequality Rtm(V) ~< R . ~  for all v e I-I~/, which proves Theorem 4.5. 

Theorem 4.6. If the permittivities of the two/m-problems are such that ~ (W, ~)  1> ) .(¥, X) for any 
¥ ~ Hq~n, we have co21~ ~< ¢02.tmk for all k. 

Since )(.)(~, Z ) ~  = )(*)(V, Z) for all X ~ Hem, we have V)(,)W = ~. )  • V¥. Then, for any q~, 
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¥ • H ~  the following chain of  inequalities holds 

(~,~qo, ¥)~m = (aqO, a*~)~m = ~ V~qo. V~,¥dfl  = 

= I V~o. ~s. ~s. V v d ~  = I Vqo. 3s.  ~s. V~df~ =(oo,¢p, ~)~*m 
f l  f l  

by virtue of the s3anmetry of the tensor 9s .  9s.. From the established commutivity of  the symmetric 
positive-definite operators 9. and 9 it follows that their quadratic roots also commute [9]. 

Further, for all q~ • H~,n we have 

. - ~  ~ /2 -/2 /2 /2 . 
a(tp, t,o)=(~tp, tp),p,,,=(a/2(p,~(p)q,,,,=(a, 3. ~ ~o,~. a, ~ q)~w.= 

Similarly 

= (~:1(,~3~o), ~a~o),~,,, 

Since ~.w2~ i/2 =: ~ 1/2~-.w2, it follows from the condition of the theorem that 

- I  (3-1~/, ~)~,, __< (~. ¥, ¥)~, 

for all V e FI~ .  
Finally, from (2.7) and (2.8) we have 

3(*)(A(*)I,,,v, At*)/,,,v) = (a?,t)ev,eV)wn 

and hence, from (4.5) and (4.6) we have 

3(Atmv, AlmV)<- a*(A*lmV, A*/mV) 

( 4 . 5 )  

(4.6) 

for all v • Hut, which in fact also proves the theorem. 

Theorem 4.7. If the piezoelectric moduli of the two/m-problems are such that e*(z, v) = Ze(Z, v) for 
any Z • H ~ ,  v • Hut and X I> 1, we have ( o 2  ~< co2t,,a, for all k. 

Since ~ (Z ,  v) := e(z, Zv), we have e.v = e~.v = 7tev, and from (4.6) we have 9 (A*tmV, A.tmv) = 
2 1 2 X ( ~- ev, ev)qrn = Z 3, which also proves the theorem. 

Note that the conditions of  Theorems 4.4, 4.6 and 4.7 for piezoelectric ceramics polarized in the 
directions of the x3 axis are satisfied in p ~< p., ~ ~> 0, j  = 1, 3, 4, Ac~11 ~> 1 ~ 2  I, Ac~33(Ac~n + ~ 2 )  ~> 
2(Ac~13) 2, AcE~ = c E - c~.k/ for Theorem 4.4, 9~ I> )sjj (j = 1, 3) for Theorem 4.6 and e.13 = 2ke13, 
e.15 -- ~e15 , e.33 -- i~e33 , ~. I> 1 for Theorem 4.7. (Here we have used the Voigt double-subscript notation 
for ~ n  and eqk.) 

5. F U N D A M E N T A L  C O N C L U S I O N S  

We will summarize the results of Theorems 4.1-4.6. If on certain parts of Su~ we replace the conditions 
of clamping (1.10) by the contact conditions (1.7)-(1.9), then, by Theorem 4.1, the natural frequencies 
are reduced. 

If on certain parts of S ,  we replace the conditions for the potential (1.14) to be zero by electric 
conditions of the contact type (1.12) and (1.13), then by Theorem 4.2 the natural frequencies are 
increased. 

Note that the natural frequencies of the problem in all the short-circuited electrodes are usually electric 
resonance frequen~cies, while the natural frequencies of  the problem with all open-circuited electrodes 
are antiresonance frequencies. Theorem 4.2 therefore also asserts that the antiresonance frequencies 
are not less than t]ae resonance frequencies with the same order numbers. 

By Theorems 4.3 and 4.4 a reduction in the boundary Su or a reduction in the elastic moduli and 
an increase in the density lead to a reduction in the natural frequencies. Conversely, by Theorems 4.5 
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and 4.6 a reduct ion in the electrode boundary  S~ or  a reduct ion in the permittivities lead to an increase 
in the natural  frequencies. 

Compar ing  the effects reflected in Theorems  4.1, 4.3, 4.4 and 4.2, 4.5 and 4.6 we can conclude that  
similar changes in the mechanical  and electric boundary  conditions or  in the elastic moduli  and the 
permittivities lead to opposi te  changes in the natural  frequencies.  

This research was suppor ted  by the Russian Founda t ion  for  Basic Research  (94-01-01259). 
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