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OF ELECTROELASTIC BODIES OF
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Homogeneous problems of the natural oscillations of bounded electroelastic solids, in contact with rigid plane punches and coated
with a system of open- and short-circuited electrodes, are considered. A variational principle is constructed which has the properties
of minimality, similar to the well-known variational principle {1] for problems with only short-circuited electrodes. The discreteness
of the spectrum and the completeness of the eigenfunctions are proved. As a consequence of variational principles, the properties
of an increase or a decrease in the natural frequencies when the mechanical and electrical boundary conditions and the moduli
of the electroelastic solid change are established. It is noted that changes in the mechanical and electrical parameters cause opposite
changes in the natural frequencies. A confirmation of the fact that, for an electroelastic solid with a multi-electrode coating, the
natural frequencies for short-circuited electrodes (the electric resonance frequencies) do not exceed the corresponding frequencies
for open-circuited electrodes (the antiresonance frequencies) is obtained as a special case of one of the theorems proved. ©
1996 Elsevier Science Ltd. All rights reserved.

1. FORMULATION OF THE PROBLEM

Suppose an electroelastic solid occupies a region Q, bounded in R®. We will assume that the region Q
and its boundary dQ = § are subject to the following conditions: Q is the sum of a finite number of
sets, star-shaped with respect to any spheres contained in them, while S is a Lipschitz boundary of class
C!. These (, S) conditions are presented more comprehensively in [1].

Confining ourselves to investigating steady exp(iax) oscillating modes, we will use only the amplitude
values for all the physical quantities considered without additional provisos.

The homogeneous problems of the oscillations of electroelastic solids include differential equations
in Q consisting of the field equations in the electrostatics approximations

-V.o=pulu (1.1)
V-D=0 (1.2)

and the governing relations of a linear electroelastic solid

o=cf-.e—eT-E (1.3)
D=e¢--€e+3-E 1.4)
e=€e(u)=(Vu+Vu"2, E=E(g)=-Vo (1.5)

We have used the notation that is standard [2] for the theory of electroelasticity, namely, o and €
are second-rank stress and strain tensors, D and E are the electric induction and electric-field vectors,
p is the density of the material, ® is the angular frequency of the oscillations, u is the displacement
vector, ¢ is the electric-field potential, ¢ is a fourth-rank tensor of the elastic moduli, e is a third-rank
tensor of the piezoelectric moduli, 3° is a second-rank permitivity tensor and (. . )7 is the operation of
transposition.

We will assume that the function p(x) is a piecewise-continuous and p(x) = py > 0, the components
of the tensors ¢, e, 35 are giecewise-continuous together with their first derivatives with respect to x,
where cg,d = cglk == cﬁk, = Cieli» €ijk = cﬁj, ,3% = 3j;and cﬁk, and >j satisfy the conditions for them to be
strictly positive-definite.
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146 A. V. Belokon’ and A. V. Nasedkin

The boundary conditions are of two types: mechanical and electrical.

To formulate the mechanical boundary conditions we will assume that the boundary S can be split
into two subsets: S5 and S, (S = S5 U S,).

The parts of the boundary S are stress-free, i.e.

n-o=0, xe S, (1.6)

where n is the unit vector of the outward normal to the surface.

Suppose S, = U S, k=0,1,...,L;S,0# &, S, do not border one another, while among S, there
are L + 1 — I rigidly clamped sections and / plane parts, in contact with plane punches, whose masses
will be neglected. We will assume, for simplicity, that all these / plane parts are perpendicular to the x;
axis. Then, we can assume the following boundary conditions on S,;

on-n-o-mn=0,xeS,;, i=1,2,..,] IsL 1.7
u-n=i0a;,xj, xeS,;, xo=1 =12, IsL (1.8)
ijjn-mi._ds=o, xo=1 j=012, i=12,..,l, ISL 1.9
! u=0,xeS,, j=0,1+1,1+2,..,L, So#*J (1.10)

where the contact conditions (1.7)—(1.9) do not occur when/ = 0.

The unknown quantities oj;, which specify the plane displacements of the sections §,;, are to be
determined from the integral conditions (1.9).

To specify the electrical boundary conditions we will assume that the boundary S is split into two
subsets: Sp and S,. The sections Sp do not have electrodes, and the following conditions are satisfied
on them

n-D=0, xe §p (111)

The subset S, is a combination of M + 1 sections Sy (k = 0, 1, . . ., M), which are not adjacent
to one another, coated with infinitesimally thin electrodes. We will specify the following boundary
conditions on these sections

¢=®i, xeS8,, i=1,2,..,m, m< M, ®;=const (1.12)
[n-DdS=0, xeS,, i=1.2,...m, msM (1.13)
Sei

0=0, xe S j=0m+1, m+2,. . M Sy# (1.14)

By (1.12) and (1.13) there are m open-circuited electrodes on which the potentials ®; are initially
unknown, but the overall charges on each electrode are equal to zero. The remaining M + 1 - m
electrodes are assumed to be short-circuited with zero values of the potentials. The cases m = 0 and
m = M are not ignored. In the first case, conditions (1.12) and (1.13) are not present, and all the
electrodes are short-circuited. In the second case, condition (1.14) only applies for the electrode Sy,
and all the electrodes S (k = 0, 1, ..., m = M) can be assumed to be open-circuited.

In fact, since the potential ¢ is defined apart from a constant, we can take (1.14) for Sy, and from the equation

jn-Dds=0
e

which follows from (1.2), and from (1.11) and (1.13) it follows that (1.13) is also satisfied for Sqo with @, = 0.

We will also assume that all the sections S, and Si have Lipschitz boundaries of the class cl
and do not intersect one another.

Problem (1.1)~(1.14) is a problem of natural oscillations and consists of finding the eigenvalues o’
and eigenfunctions u and ¢, which give non-trivial solutions of the homogeneous boundary-value
problem.
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Conditions (1.12) and (1.13) are similar to the mechanical contact conditions (1.7)—(1.9) with rigid
punches. These “contact” boundary conditions distinguish this problem from the problem investigated
previously in [1] with only short-circuited electrodes withm = 0 and / = 0.

We will establish the mathematical properties of the spectrum of problem (1.1)-(1.14) by combining
the approaches used in [1, 3] when investigating dynamic problems of electroelasticity and contact
problems of the theory of elasticity.

2. GENERALIZED AND VARIATIONAL FORMULATION
OF THE PROBLEM

We will introduce the space of functions ¢ and the vector functions u, defined on Q, which we shall
need later.
We will denote by H,, the space of vector functions u € L, with the scalar product

(u,v), = [pu-vdQ
Q

On the set of vector functions u € C! which satisfy (1.10) and (1.8) for arbitrary o; on S,;, we will
introduce the scalar products

(u,v), = [(Vu)-(Vv)TdQ 2.1
Q

The closure of this set of vector functions u in the norm generated by the scalar product (2.1) will
be denoted by H,;.

On the set of functions ¢ € C! which satisfy (1.14) and (1.12) for arbitrary ®; on Su(i=12,...,
m), we will introduce the scalar products

(@, W)gm = | Vo VydQ (22)
Q

The closure of this set in the norm generated by the scalar product (2.2) will be denoted by Hy,y,.
Then, for arbitrary ve H,, X € Hgn, using standard procedures, we can convert (1.1)~(1.14) to the
form

—@p(u, v) + c(u, v) + (9, v) =0 (23)

—e(XY u) + 3((pv x) = 0 (2‘4)

where

p(u,v)= fpu-vdQ, c(u,v)= [e(u)- f e(v)dQ

Q Q (2.5)
e(@,v)=[Vo-e - €«(v)dQ, a(9,x)= jV(p-:-)S-deQ

Q Q

By virtue of the properties assumed earlier, the forms p(u, v), c(u, v) and >(g, %) in (2.5) are
symmetrical, bilinear and positive-definite in L,, H,; and H,,, respectively, while e(g, v) is a bilinear
form.

Since for fixed u € Hy;, ¢ € Hy,y, e(X, u) and 3(g, X) are linear-bounded functions in Hy,,, by Riesz’
theorem elements eu, >¢ € H,,, exist and are unique such that for y € Hy,

e, W) = (X, eWgm (2.6)
a(@, ) = (39, Xgm 2.7

It is obvious that eu and 3¢ are linear bounded operators acting from H,; into H, and from Hy,,
into H,,, respectively, and an inverse exists for the operator >¢.
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From (2.4), (2.6) and (2.7) we obtain that
s9=eu, @=A,u, A, =3le (2.8)

where the operator A,,, acts from H,, into H,, and is linear and bounded.
Using (2.6)(2.8) we can represent system (2.3), (2.4) in the form

—@’p(U, V) + €3y (0, v) = 0 (2.9)
where
Cotm(Uy V) = €(U, V) + 3(A sty AV (2.10)

Definition. We will call the triple of quantities (0% u e Hy, ¢ € Hgn), which satisfy (2.9) and (2.8)
for arbitrary vector functions v e H,; or, which is equivalent (2.3) and (2.4) for arbitraryve H,, x €
H,,,, a generalized solution of problem (1.1)—(1.14).

By discussions similar to those presented in [1] for the case when m = 0 and [ = 0, we can show that
the space H,5,,,, which is the closure of the set of vector functions u € C, satisfying (1.8) and (1.10) in
the norm generated by the scalar product (2.10), is equivalent to H,, and the following theorem follows
from the complete continuity of the operator of embedding from H,; into H,, as also in the general
situation [4].

Theorem 2.1. The operator equation (2.9) has a discrete spectrum 0 < @}, < @y < ... <
Ok < ..., Wy — o0 as k — oo, and the corresponding eigenfunctions u(k,,,z form a system that is ortho-

gonal and complete in the spaces Hy and H,; ..

Theorem 2.2. (The Courant—Fisher minimax principle)

2 .
Oy = max mi R (V)
fmk wiwy..wi € Hy v#O.veHu, Im

PLV.w;)=0,j=1.2,. k-1

where Ry, (v) is the Rayleigh quotient

€31y (V,V)
p(V,v)

The subscripts / and m in Theorems 2.1 and 2.2 are introduced for convenience in indicating later
that the generalized solutions belong to problems with [ sections in contact with rigid plane punches,
and with m open-circuited electrodes.

Note that Theorem 2.1 is important for justifying Fourier’s method of solving unsteady problems of
electroelasticity [5, 6].

le(v) =

3. THE RELATION BETWEEN THE OPERATORS A4;,, AND A,

We will introduce the functions Wj € Hopy G =1,2,..., M), y; = 8y, xe S (k =0, 1,..., M)
which, for all x € Hgy, satisfy the integral identity

(W, ) =0 (3.1)

Using the quantities C’,-‘j’ = 3 (y;, y;) we form the M X M matrix C¥ called the static-capacitance matrix
in electrostatics. In view of the fact that the form > (g, %) is symmetric and positive-definite in the space
H,,,, the matrix C* will also be symmetric and positive-definite. Then, any principal m x m submatrices

, made up of the elements C%, 1 <, j < m will also be symmetric and positive-definite, as also the
inverse matrices 8™ = (C™)™.

For a problem with m open-circuited electrodes, the arbitrary element y € H,,, and the solution
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¢ € Hy, can be represented in the form

m m
X=%Xot+ ;xk‘l’k’ P=0Q+ Efbk\vk (32)
where %o, g € Hyo, X are arbitrary constants, while @, are initially unknown values of @ on S from
2).

11
Substituting (3.2) into (2.4) and using (3.1) and the fact that ¥y, X, X = 1, 2,. .., m are arbitrary,
we obtain

(o Xo0) = e(Xo» W) (33)
e(y,,u)= 2] Cy®; (34)
I=
From (3.3) by (2.6)—(2.8) we have ¢y = Apu, and from (3.4) we have

j=1

As aresult, using (2.8) and (3.5) from (3.2) for ¢ we obtain the following relation between the operators
A Im and AIO

m m
A,mu = A,ou + kz] zlslgql]u"l’k
=1j=

Since Ayu € Hy, using property (3.1) we will also have

(AL, A, V) =3(Ag,u,Agv) + 2 ZS,Z"P,:“P" (3.6)
k=1j=1

for anyu,ve Hy,.

4. CONSEQUENCE OF THE VARIATIONAL FORMATIONS

We will call problem (1.1)—(1.4) the /m-problem, emphasizing by this the presence of / parts of S,
in contact with plane punches, and m open-circuited electrodes Sg;.

We will consider two similar /m- and pm-problems, which differ solely in the numbers ! and p of
contacting parts of S; in (1.7)—(1.10). All the remaining governing parameters from (1.1)—(1.14) in the
Im- and Ip-problems are assumed to be the same.

Theorem 4.1.If 0 < | < p < L, for any k the kth natural frequency of the Im-problem is no less than
the kth natural frequency of the pm-problem, i.e. Wy = ©3 pmice

Since I < p, we have H,; C H,,, and for allv e H, 4;,, v = A,,v and RI,,,(v) Rom().

Then, Theorem: 4.1 follows from the well-known discussions in {4], using Theorem 22,

We will now consider two similar Im- and In-problems (1.1)(1.14), which differ solely in the numbers
m and n of open-circuited electrodes S in (1.12)—(1.14).

Theorem 4.2. If 0 < m < n < M, then, for any k, the kth natural frequency of the /m-problem does
not exceed the kth natural frequency of the In-problem, i.e. @5y < 0y
By (2.10) and (3.6) for m # 0 we have

n n m m
€3, (V,¥) = €34, (V, V) = X X SO - 3 3 SpWr ) 4.1)
k=1j=1 k=1j=1
We will represent the matrix S” in partitioned form
G B
B F

S" =

4.2)
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where G and F are m x m and (n — m) x (n — m) positive-definite symmetric matrices, respectively.
Since the matrix §" is the inverse of C”, while 8™ is the inverse of the submatrix C™ of the matrix C*,
we have from the representation [7] for a matrix that is the inverse of a partitioned matrix
S"=G-BT-F-!.B (4_3)
Using (4.2) and (4.3) the right-hand side of (4.1) can be represented in the form
B".F'B BT g
F

(G ASLE (4.9)

where ¥" is an n-dimensional vector with components 3.
The matrix in (4.4) is positive-semidefinite [7], and consequently for all v € H,, the following in-
equalities hold

C3[m(V, V) = C31,,(V, V), le(v) = Rln(v)

These inequalities also hold when m = 0, since, in this case, there are no sums with §%; in (4.1), and
the matrix S” is positive-definite.

The inequality proved for the Rayleigh quotients, taking Theorem 2.2 into account, in fact also proves
Theorem 4.2 [4].

We will investigate the change in the natural frequencies of the Im-problem (1.1)—(1.14) when some
of its parameters change. These changes will be indicated explicitly in the formulations of the following
theorems, and all the quantities referring to the modified m-problems will be indicated by an asterisk.
As above, for the initial and modified problems all the theorems not indicated in the formulations which
define the parameters from (1.1)—(1.14) are assumed to be identical.

Theorem 4.3. If §, O S+, S5, O S+,j = 0,1, ..., L, we have W2 = @y for all k.

Theorem 4.4. If the elastic moduli and the densities of the two Im-problems are such that c(v, v) =
c+(v, ¥), p(¥, ¥) < p(v, ¥) for any v € Hy;, then @}y = @2y for all k.

I£S, O Swy, Syj O Svyj, then H, C He, and Ap,(v) = Awy(v) for all v € Hy. Consequently, Ry, (v) =
R.,,,,(v) forallve H,,in the condmons of both theorems. This inequality proves Theorems 4.3 and 4.4.

Note. The influence of S, the elastic moduli and the density of the electroelastic material on the first natural
frequency @} of problem (1.1)(1. 11) for/ = 0 and m = 0 was considered in [8]. To do this the following variational
principle was employed: w3; = min R(v), v = 0 on S,,, and R(¥) = (c(v, v) + (X, X))/p(¥, v) when % is defined in
terms of v as the solution of problem (1.2), (1.4), (1 5), (1.11), (1 14) with ¢ replaced by x, and u replaced by v.
Note that this formulation is not mathematlcally rigorous since Y is defined as the class1cal solutlon, while for @
and u a variational approach is used which glves a generalized solution. The condition c,,,d = ¢ proposed in [8]
instead of c(v, v) = c«(v, v) in Theorem 4.4 is neither necessary nor sufficient. The correct con(‘htlon of Theorem
44 reqmres that for the differences of the moduli Acyy; = cE,d - c’.z,]k, , the form Ac(v, v) should be positive-definite,
which is not ensured by the inequalities c,fk, = cﬁﬂd , and these inequalities are not necessarily satisfied when the
form Ac(v, v) is positive-definite.

Theorem 4.5.1f S¢ D S+, Sgj D S+gj =0, 1, ..., M we have m,,,,k (n.,mkforallk
IfSg D Seg, S D S. , We have Hgn C Hegyy, . From (2.4) and (2.8) for arbitrary functionsu € H,; we
have

e, w)=3(9, %), ¢, %€ Hep, ©=A5u
e(x’ u) = 3((Pn x)’ (Pm, x € H"'(pnv (P# = A*lmll

Substituting 4 = ¢ into these equations we obtain ;(¢., ¢). Consequently, 0 < 3(¢ — ¢, ¢ — @) =
3(@+, @+) — (1, @), which implies the inequality R;,,(v) < Ru, for all v e H,;, which proves Theorem 4.5.

Theorem 4.6. If the permittivities of the two Im-problems are such that 3 (y, y) = >.(y, x) for any
v € Hy,,, we have & < o’y for all k.
Since 3¢(W, Lgm = Iy, x) for all x € Hgy, we have V3 gy = () - Vy. Then, for any o,
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vy € Hy, the following chain of inequalities holds
(3430, Y)gm = (39,3:Y) gy, = [Va¢-Va,ydQ =
Q

= (le(p-as -3d - VydQ = [V 3l -3° - VydQ =(35.9, ),
Q

by virtue of the symmetry of the tensor >3 - 35.. From the established commutivity of the symmetric
positive-definite operators 3. and 3 it follows that their quadratic roots also commute [9].
Further, for all ¢ € Hy,, we have

-4 v B hh
3(9,9) = (90, 0)gm = (379,550, = (o4 f0lta" 0,5, 00 0" Q) gm =

=(as! (3,%3%([)), a.}éa}é(p)w
Similarly

2.(9,9)= ("' (3%3.‘/2([)), ayza.%(p)w

Since 312512 = 312312 it follows from the condition of the theorem that

Y, Wom < 0+ ¥, Wom (4.5)

for all y € Hgy,.
Finally, from (2.7) and (2.8) we have

3(.)(A(.),mv, A(n)lmv) = (3(_1.‘)ev,ev)¢m (4-6)
and hence, from (4.5) and (4.6) we have

ALY, ApVY) < au(Ag,V, Ag,V)
for all v e H,;, which in fact also proves the theorem.

Theorem 4.7. If the piezoelectric moduli of the two Im-problems are such that e«(y, v) = Ae(y, v) for
any x € Hg,, ve Hyand A = 1, we have O < O34y for all &.

Since Ae(y, v) = e(X, Av), we have e.v = eAv = Aev, and from (4.6) we have 3(A+,V, As,¥) =
A}(>7lev, eV)om = A%>, which also proves the theorem.

Note that the conditions of Theorems 4.4, 4.6 and 4.7 for piezoelectric ceramics polarized in the
directions of the x; axis are satisfied in p < p», Acf =0,j = 1,3,4, Ak, = | A |, AdG(AK, + AE) =
2(Ach)?, Ak = ¢k — c& for Theorem 4.4, 35 = 3% (j = 1, 3) for Theorem 4.6 and e+;3 = Aey3,
€+15 = Aeys, ee33 = Ae33, A = 1 for Theorem 4.7. (Here we have used the Voigt double-subscript notation
for kal and e;.)

5. FUNDAMENTAL CONCLUSIONS

We will summarize the results of Theorems 4.1-4.6. If on certain parts of S,; we replace the conditions
of clamping (1.10) by the contact conditions (1.7)—(1.9), then, by Theorem 4.1, the natural frequencies
are reduced.

If on certain parts of S we replace the conditions for the potential (1.14) to be zero by electric
conditions of the contact type (1.12) and (1.13), then by Theorem 4.2 the natural frequencies are
increased.

Note that the natural frequencies of the problem in all the short-circuited electrodes are usually electric
resonance frequencies, while the natural frequencies of the problem with all open-circuited electrodes
are antiresonance frequencies. Theorem 4.2 therefore also asserts that the antiresonance frequencies
are not less than the resonance frequencies with the same order numbers.

By Theorems 4.3 and 4.4 a reduction in the boundary S, or a reduction in the elastic moduli and
an increase in the density lead to a reduction in the natural frequencies. Conversely, by Theorems 4.5
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and 4.6 a reduction in the electrode boundary S, or a reduction in the permittivities lead to an increase
in the natural frequencies.

Comparing the effects reflected in Theorems 4.1, 4.3, 4.4 and 4.2, 4.5 and 4.6 we can conclude that

similar changes in the mechanical and electric boundary conditions or in the elastic moduli and the
permittivities lead to opposite changes in the natural frequencies.
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